BONDING E ANTIBONDING

Fig. 2.17a,b. Overlap of two s orbitals to form bonding and antibonding σ orbitals

Fig. 2.18a,b. Overlap of two p_x orbitals along the x axis to form bonding and antibonding σ orbitals

Fig. 2.19a,b. Overlap of two p_y orbitals to form bonding and antibonding π orbitals

(a) homopolar molecule $E_s = \frac{1}{\sqrt{V} - \frac{1}{\sqrt{V}}} \quad \text{Molecule}$ (b) heteropolar molecule $E_x^{(a)} = \frac{1}{\sqrt{V^2 + (\Delta E)^2}} \quad \text{antibonding}$ $E_x^{(a)} = \frac{1}{\sqrt{V^2 + (\Delta E)^2}} \quad \text{bonding}$

Fig. 2.20. Effect of orbital overlap on the energy levels in (a) a diatomic homopolar molecule and (b) a diatomic heteropolar molecule. V represents the matrix element of the interaction Hamiltonian

Fig. 2.22. Evolution of the atomic s and p orbitals into valence and conduction bands in a semiconductor. $E_{\rm F}$ is the Fermi energy